1 A drug is administered by an intravenous drip. The concentration, x, of the drug in the blood is measured as a fraction of its maximum level. The drug concentration after t hours is modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=k\left(1+x-2 x^{2}\right)
$$

where $0 \leqslant x<1$, and k is a positive constant. Initially, $x=0$.
(i) Express $\frac{1}{(1+2 x)(1-x)}$ in partial fractions.
(ii) Hence solve the differential equation to show that $\frac{1+2 x}{1-x}=\mathrm{e}^{3 k t}$.
(iii) After 1 hour the drug concentration reaches 75% of its maximum value and so $x=0.75$.

Find the value of k, and the time taken for the drug concentration to reach 90% of its maximum value.
(iv) Rearrange the equation in part (ii) to show that $x=\frac{1-\mathrm{e}^{-3 k t}}{1+2 \mathrm{e}^{-3 k t}}$.

Verify that in the long term the drug concentration approaches its maximum value.

2 A curve has parametric equations $x=\mathrm{e}^{3 t}, y=t \mathrm{e}^{2 t}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t. Hence find the exact gradient of the curve at the point with parameter $t=1$. [4]
(ii) Find the cartesian equation of the curve in the form $y=a x^{b} \ln x$, where a and b are constants to be determined.

3 Fig. 8.1 shows an upright cylindrical barrel containing water. The water is leaking out of a hole in the side of the barrel.

Fig. 8.1
The height of the water surface above the hole t seconds after opening the hole is h metres, where

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-A \sqrt{h}
$$

and where A is a positive constant. Initially the water surface is 1 metre above the hole.
(i) Verify that the solution to this differential equation is

$$
h=\left(1-\frac{1}{2} A t\right)^{2} .
$$

The water stops leaking when $h=0$. This occurs after 20 seconds.
(ii) Find the value of A, and the time when the height of the water surface above the hole is 0.5 m .

Fig. 8.2 shows a similar situation with a different barrel; h is in metres.

Fig. 8.2
For this barrel,

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-B \frac{\sqrt{h}}{(1+h)^{2}},
$$

where B is a positive constant. When $t=0, h=1$.
(iii) Solve this differential equation, and hence show that

$$
h^{\frac{1}{2}}\left(30+20 h+6 h^{2}\right)=56-15 B t .
$$

(iv) Given that $h=0$ when $t=20$, find B.

Find also the time when the height of the water surface above the hole is 0.5 m .

4 The motion of a particle is modelled by the differential equation

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} x}+4 x=0
$$

where x is its displacement from a fixed point, and v is its velocity.
Initially $x=1$ and $v=4$.
(i) Solve the differential equation to show that $v^{2}=20-4 x^{2}$.

Now consider motion for which $x=\cos 2 t+2 \sin 2 t$, where x is the displacement from a fixed point at time t.
(ii) Verify that, when $t=0, x=1$. Use the fact that $v=\frac{\mathrm{d} x}{\mathrm{~d} t}$ to verify that when $t=0, v=4$.
(iii) Express x in the form $R \cos (2 t-\alpha)$, where R and α are constants to be determined, and obtain the corresponding expression for v. Hence or otherwise verify that, for this motion too, $v^{2}=20-4 x^{2}$.
(iv) Use your answers to part (iii) to find the maximum value of x, and the earliest time at which x reaches this maximum value.

5 The total value of the sales made by a new company in the first t years of its existence is denoted by $£ V$. A model is proposed in which the rate of increase of V is proportional to the square root of V. The constant of proportionality is k.
(i) Express the model as a differential equation.

Verify by differentiation that $V=\left(\frac{1}{2} k t+c\right)^{2}$, where c is an arbitrary constant, satisfies this differential equation.
(ii) The value of the company’s sales in its first year is $£ 10000$, and the total value of the sales in the first two years is $£ 40000$. Find V in terms of t.

